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ABSTRACT

This thesis presents a dual exploration in the study of the bean beetle 
Callosobruchus maculatus. The first aspect investigates Juvenile Hor-
mone (JH) influence on the behavior and morphology of C. maculatus 
by manipulating JH levels in adults through abdominal injections. JH is 
critical for the regulation of both developmental and physiological pro-
cesses. It is linked to resource allocation trade-offs between wings and 
gonads during the larval stage. However, its effects on adults are not 
fully understood. The second aspect pioneers the development of an 
automated machine learning model for measuring and classifying mor-
phological features using neural networks and computer vision. The 
findings offer new insights into the behavioral effects of JH and show 
the potential of automation to revolutionize data collection methodolo-
gies in animal behavior. This dual approach not only advances our un-
derstanding of evolutionary trade-offs in bean beetles but also showcas-
es the integration of technological advancements in biological research.

DEDICATION

This work is for those who were there to celebrate the wins, the losses, the confu-
sions, and the successes of this journey alongside me.

At its core and beyond, this work is for all the Palestinians and the land that I 
belong to, Palestine.

 It is for all the Palestinian students, scientists, farmers, writers, thinkers, moms, 
dads, children, and freedom fighters who were murdered by the Israeli occupa-

tion.  
I love you.  

I wish that you all got to show us your minds, your dreams, your thinking, and 
your work. 

I wish there  was no occupation.

To a free and liberated Palestine, from the river to the sea.

ACKNOWLEDGMENTS
I wrote this section last because the best is always kept to the 

last. I also couldn’t fathom how lucky I am to have come across so 
many people who uplifted me and guided me to get to this point. It 
would indeed take a whole other thesis of its own to name all of them. 

I thoroughly remember the history books for kids, anime on Spac-
etoon, outdoor games, and the Lego that my parents showed me as a kid. 
They bring me joy and comfort. Little did they know that all of that would 
shape me into the person I am today. From that small corner space in our 
old house to the view of the mountains with the shepherd and his sheep 
in the new one, I am thankful for all the learning lessons, pieces of advice, 
labaneh, zaatar, and martadella sandwiches with cucumbers that my mom 
prepared me every study night; as well as all the fruits my dad peeled 

for me without hesitation. I am shaped by the rides to school with Fairuz 
echoing at every corner and the return trips that were brimming with 
anticipation and guesses of what we will have for lunch. To those dedi-
cated and tireless parents who restlessly give: thank you for all the good 
deeds you planted in me. I truly believe that I would be a different per-
son without your upbringing. You taught honesty and honor, loyalty and 
reliability, respect and responsibility, compassion and humility, courage 
and perseverance, and above all, you taught genuineness and generosity.  

I am also grateful for the many teachers I came across since kin-
dergarten to my high school graduation. I think of them often and I 
find myself wishing them all what their hearts desire, especially when 
I see their teachings and lessons uplifting my success every single day. 
To Miss Amneh, Miss Ensaf, Miss Ola, Miss Mouthana, Miss Jihad, Us-
tad Osama, Miss Maysoon, Ustad Khalil, Miss Fatin, Melinda R, Rachel 
W, and Brett G, I am thankful for each one of you. You all have played 
a major part in everything that I am today. I will fail to name all the key 
teachers I had, but if you ever come across this thesis, you will know 
yourselves. You made a difference on me, and I am forever thankful. 

To my friends who made my time here at Lake Forest College price-
less, I hold your love, reassurance, and endless support so close to my 
heart. I also admire the people that you have become, and I am lucky to 
have met you at such a young age. Mariam BP, your humor, music choices, 
and conversations pushed me through many moments. I feel lucky to have 
witnessed you grow into the inspiring person you are today, and I can 
only, impatiently, wait to see you thrive more. Valen FF, your invaluable 
love, environmental justice enthusiasm, ongoing support, and contagious 
energy got me through many tough weeks. I have kept our bike rides, late-
night conversations, cooking hangouts, and library study sessions since 
Fall 2021 close to my heart. Suvexa PT, you are an incredible, talented, and 
passionate person, and you have always inspired me. Thank you for being 
yourself unapologetically and blessing us with funny, informative, useful, 
dumb, powerful, and creative content. Ezar S, your honesty, genuineness, 
love for science, and Libyan Arabic are priceless. I am thankful for every 
conversation, thought, and trip we were able to share. Ricardo SO, I ad-
mire your passion for growth, integrity, and openness to others. As much 
as I have learned from you; I have also laughed, felt supported, and en-
joyed every memory. Zainab Z, thank you for sharing with me your beau-
tiful energy, food and cuisine, and passion for mathematics and learning. 
Rayan K, your friendship has been a blessing, and I would never replace 
our Ramadan plans, football obsession, and conversations for anything. 
Rutuja B, thank you for being the best neighbor I would have ever asked 
for; I learned a lot about discipline, networking, and consistency from you. 
I keep our conversations and food exchanges very close to my heart; and I 
cannot wait to come visit you in India. Elya G, having you in the loop was 
a blessing. I really enjoyed getting to know you, the study sessions, and 
all the walks in Chicago. Lexi R, thank you for being the person you are, 
sharing many stories with me, and saving my arm when I broke it. I cher-
ish our friendship and keep it close to my heart. Emilia G, I am so glad we 
got to meet and grow a beautiful friendship at such a young age. You are 
inspiring, powerfully smart, a beautiful converser, and above all a strong 
person and a true friend. Anait N, I enjoyed our COVID post-chemistry lab 
conversations over Zoom, rooming with you in Roberts, rant sessions in 
Moore, and many more conversations. You are an incredibly strong, smart, 
warm, and loving person. Valeria A, I cherish all the conversations we 
were able to have throughout my time at LFC. I love how funny, genuine, 
honest, and easy-going our friendship and conversations are. Kotryna A, I 
really admire all the conversations we shared; from the infamous question 
at Anait’s birthday “Have we met? What’s your name?” to the last bit of 
memories we had. I treasure this friendship and look forward to its future. 
Cindy LS, thank you for all the conversations, reflections, food making, 
PlayStation sessions, and all the memories. You have been a key part of my 
college journey. Mais Massoud, your friendship has been not only ever-
green and long-lasting, but it has also brought so much joy and core mem-
ories to my life. Huda Zorba, thank you for all the laughs, tough conver-
sations, shawarma lunches, homemade food, and a true strong friendship. 
Lastly, to the infamous Tarneeb, Trix, and Estimation card games group, 
I must say that you all got me through many nights and turned many in-
different ones to be memorable, fun, funny, and warm. Thank you. Thank 
you for everything. Thank you to all of you and the many other friends 

Evolutionary trade-offs and machine 
learning in Bean Beetles: Behavioral 
Effects of Juvenile Hormone and the auto-
mation of Morphological Measurements 

Raneem Na’el Hussein Samman
Lake Forest College
Lake Forest, Illinois 60045

*This author wrote this paper as a senior thesis under the direction of Dr. Sugata Banerji & Dr. 
Flavia Barbosa



Eukaryon, Vol. 21, March 2025, Lake Forest College Senior Thesis

	

Eukaryon						          2 					           Volume 21

I got to make along this journey. It has been an honor and a pleasure for 
me. I cannot wait to keep nurturing those friendships outside of LFC now.

To my lab mates and mentors, you really have made this work pos-
sible. I enjoyed working alongside every one of you. Frances, you taught 
me so much. Your mentorship, attention to detail, and kindness have all 
brought an immense level of joy to my learning curve that flourished un-
der your mentorship. I thank you for every minute you spent teaching me, 
explaining concepts, and passing down knowledge and techniques. Beth 
and Iman, I enjoyed learning alongside you and from you. Beth, I keep our 
dissection-table conversations so close to my heart. Iman, I will always 
enjoy our humor and friendship. Katina, you are an absolutely wonderful 
person to have in the lab. Thank you for being you and sharing that with us. 
Lia, I enjoyed every conversation we had in the recording room. You are an 
amazing researcher and an even better person. Isabella, I could never (and 
would never) ask for anyone else to do my thesis research with. I was bless-
ed to have the chance to get to know you, work alongside you, and learn a 
lot from you. I have been lucky to spend time in our lab with you all there. I 
mean it when I say this work would not be possible without each one of you. 

I am also lucky to have been mentored by incredible scientists, ac-
ademics, and above all, humans. Dr. Flavia Barbosa, thank you for your 
constant feedback, support, and care. You made my experience at Lake 
Forest College remarkable. I appreciate your patience, honesty, transpar-
ency, and all the sharing of knowledge and resources that you relentlessly 
offered me since 2020. I can write many paragraphs about how much my 
experience in college has been impacted and influenced by you but for 
now, I hope this will suffice. Dr. Shubhik DebBurman, your guidance since 
day 1 has been greatly appreciated. You constantly pushed me to get out 
of my comfort zone and explore my potential and for that I am thankful. 
I’m also thankful for your constant celebration of talent and achievements, 
it helped me push through college many times. Professor Sara Jamshidi, 
I feel honored to have been in many of your classes and a James Rocco 
Scholar under your supervision. I have grown a lot as a researcher, a data 
and computer scientist, but most importantly as a human throughout 
knowing you. Professor Sugata Banerji, your senior seminar, classes, and 
supervision for my thesis research have taught me an immense amount 
of knowledge. I am thankful for every piece of knowledge and experi-
ence you have shared with me. Professor Andrew Gard, thank you for 
always showing me the positive side of the story. I really admire the per-
son, academic, researcher, and teacher that you are, your informative (and 
engaging) R videos, and all the investment you put into your students. 

Thank you all for believing in me. Thank you for shar-
ing your ideas, thoughts, opinions, and concerns. Thank 
you for being there when life gets in the way. Thank you

INTRODUCTION
Section 1: Neuroscience and Behavior

1a) Life history theory 

Life history theory is a fundamental framework in biology that 
seeks to understand the allocation of resources among competing life his-
tory traits in organisms (Stearns, 1977). Life history traits are influential to 
organisms’ survival, growth, reproduction, and fitness. They include traits 
such as longevity, growth rate, age and size at maturity, and reproductive 
patterns (Roff, 1992). At the core of life history theory are trade-offs, which 
are the inevitable compromises that organisms must undergo when allo-
cating resources to one history trait over another. This unavoidable alloca-
tion occurs because resources are finite. Organisms are constantly subject-
ed to environmental and evolutionary pressures that lead to the evolution 
of allocation strategies for energy, time, and other limited finite resources. 
These strategies are not the result of conscious decision-making. They are 
shaped through natural selection to optimize survival and reproductive 
success. Therefore, investing a resource in one trait reduces the availability 
of that resource for another trait and vice versa (Barbosa, Rebar, & Green-
field, 2018). For example, some species of birds face trade-offs between 
clutch size and egg size, balancing the number of offspring with the in-

vestment in each offspring’s size (Godfray, Partridge & Harvey, 1991).

Even though all species are subject to natural selection to maximize 
their lifetime reproduction, individuals tend to employ different strat-
egies to achieve that. This leads to trade-offs between different life his-
tory traits across species. For instance, species that allocate more energy 
towards immediate reproductive success face a trade-off between current 
reproduction and future survival (Johns et al., 2018). Similarly, individu-
als who invest heavily in offspring development early in life may expe-
rience higher risks as they age (Johns et al., 2018). However, trade-offs 
are not always straightforward. Empirical studies often reveal positive 
or no correlations between pairs of costly traits where negative correla-
tions were expected (Gascoigne, Uwera Nalukwago & Barbosa, 2022). 
This inconsistency could be explained by the hierarchical nature of trait 
investment, as suggested by the tree model of allocation (de Jong, 1993). 
In this model, different traits occupy different positions in a hierarchical 
tree, and their covariances are predicted based on their positions. For in-
stance, traits closer to the base of the tree, such as growth and somatic 
maintenance, are expected to have strong negative covariances, while 
traits in the upper branches, like reproductive traits, may have weak pos-
itive covariances or none at all (Gascoigne, Uwera Nalukwago & Barbosa, 
2022; de Jong, 1993). Somatic maintenance includes cellular repair, phys-
iological functions, and resistance to stressors. Thus, in this case, insects 
face a trade-off between somatic maintenance and reproduction. This 
trade-off can alter their lifespan, reproductive output, quality of life, and 
overall fitness. Therefore, individuals that allocate more resources to so-
matic maintenance may face delayed reproductive maturation with few-
er offspring, yet increased longevity (Jacot, Scheuber & Brinkhof, 2004).

Environmental factors, such as larval density in the bean beetle, Cal-
losobruchus maculatus, can also influence the pattern of trait covariances by 
inducing differential resource allocation (Gascoigne, Uwera Nalukwago, 
& Barbosa, 2022). High larval density, for example, can lead to increased 
investment in dispersal traits at the expense of reproductive traits, result-
ing in a trade-off between wing size and gonad size in males (Gascoigne, 
Uwera Nalukwago, & Barbosa, 2022).  Thus, the complexity of trade-offs 
is often shaped by both environmental factors and individual variability. 
In the absence of an environmental stressor, trade-offs might not be ap-
parent, as competing traits within an individual may not show distinct 
negative covariances. Furthermore, the relationship between two traits 
can differ based on individual differences in acquiring and allocating re-
sources. Mathematical models suggest that a positive covariance between 
costly traits occurs when individuals significantly vary in resource acqui-
sition but not in allocation, whereas a negative covariance arises when the 
opposite is true (Noordwijk and de Jong, 1986). Therefore, understanding 
the complexity of trade-offs is vital to understanding evolutionary biolo-
gy, adaptations, and mechanisms of fitness optimization (Sih et al., 2010).  

Behavior, as a life history trait, is crucial to influencing organ-
isms’ fitness and mediating trade-offs. Behaviors including mating, 
foraging, parental care, and territoriality can play a direct role in or-
ganisms’ ability to acquire resources, successfully reproduce, or avoid 
predators (Campbell et al., 2005, Chapter 51 & Stamps, 2007). To further 
understand how behavior influences trade-offs, researchers have set 
up various experimental techniques to study it. For example, research-
ers have tried to investigate growth, reproduction, or survival, which 
are all fitness-related traits, through manipulating certain behaviors. 

These manipulations can be understood through phenotypic cor-
relations, experimental manipulations, genetic correlations, and correlat-
ed responses to selection (Bolund, 2020). Phenotypic correlations involve 
observing the relationship between different traits within a population. 
For example, researchers might study the correlation between foraging 
behavior and reproductive success in a population of birds. This approach 
can help identify potential trade-offs between different behaviors. Alter-
natively, Farina and Gil experimentally manipulated factors that alter 
foraging behavior through manipulating food resources in honeybee’s 
environment; allowing them to measure life history traits, showcasing 
that experimental manipulations involve directly altering a behavior and 
observing the effects on other traits (Gil & Farina, 2002). Whereas genetic 
correlations involve studying the genetic basis of different traits and how 
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they are related. For example, researchers like Moore et al., investigated 
the genetic correlation between aggressive behavior and territoriality in 
a population of Tuatara (Moore, Daugherty, & Nelson, 2009). This ap-
proach can help identify genetic factors that influence multiple behav-
iors. Further, researchers comparatively examined how behavioral vari-
ation correlates with adaptations and differences in life history traits and 
trade-offs among different species, taxa, and populations (Leroi, Rose, & 
Lauder, 1994). In other words, Leroi et al. (1994) correlational approach 
can help identify how selection on one behavior can influence other traits. 

Each one of those techniques has its advantages and disadvantag-
es. Phenotypic correlations, for example, are relatively easy to measure 
in natural populations and can provide insights into potential trade-offs 
between different traits. However, they do not imply causation and may 
be confounded by environmental factors. Therefore, if the aim is to imply 
causation, the use of experimental techniques is advised. Experimental ma-
nipulations can establish causality because they directly manipulate one 
trait and observe the effects on others. Nonetheless, they are limited by the 
difficulty of replicating natural conditions and can raise ethical concerns at 
times. Additionally, genetic correlations are useful for understanding the 
heritability of life history traits and their relation to other traits, but they 
require knowledge of the genetic architecture and may not capture the full 
complexity of behaviors influenced by multiple genes and environmental 
factors. Lastly, correlated responses to selection can illustrate the evolution-
ary consequences of selection on one trait for other traits and help in under-
standing how traits evolve together over time, but they require long-term 
studies and can be challenging to interpret in complex ecological contexts.

The ability to understand and examine behavior as a life history 
trait equips us with valuable insights into the evolutionary and adap-
tive strategies that organisms utilize to cope with ecological and envi-
ronmental challenges in order to optimize their fitness. However, even 
though there has been an extensive amount of research into life his-
tory theory, there are still limitations in our understanding of behavior 
as a life history trait (Sih et al., 2010). We need to further integrate be-
havioral studies with physiological and morphological exploration of 
life history traits. By doing so, we can fill these gaps in our knowledge 
and gain deeper understanding of how behaviors contribute to fitness, 
trade-offs, and evolutionary adaptations. Besides, we could further un-
derstand the mechanisms influencing behavior and impacting trade-offs.

Insects are a particularly interesting group for studying behaviors 
within the context of evolution and life history traits. They exhibit diverse 
behavioral patterns, reproductive strategies, and unique interactions with 
their environments (Mousseau & Fox, 1998). They also face lots of ecolog-
ical challenges, including predation, competition for resources, and envi-
ronmental variability, that force them to constantly encounter trade-offs 
(Sih, Bell, & Johnson, 2004). Furthermore, insects make a great study organ-
ism for exploring complex life history traits and trade-offs. Besides the ease 
of their laboratory maintenance, they live relatively short generation times 
and in large population sizes. Thus, we are able to study neural mechanisms 
underlying their behavior through various available techniques, mak-
ing them ideal for exploring hormonal influences on behavior, especially 
since they rely on hormones to regulate various aspects of their behavior.

1b) Hormones and behavior

In the context of life history theory and trade-offs, understanding 
the role of hormones in mediating behavior provides insights into the 
mechanisms underlying evolutionary adaptations and fitness-related 
trade-offs. Hormones act as chemical messengers that regulate neural 
processes and control the expression of life history traits and behaviors 
such as foraging, mating, reproduction, social interactions, and aggression 
(Nelson, 2024; Karigo & Deutsch, 2022; Garland, Zhao, & Saltzman, 2016). 
They can influence insects’ adaptive responses by integrating both internal 
physiological states with external environmental cues. Therefore, measur-
ing behavior allows us to deepen our understanding of the hormonal influ-
ence that is regulating certain behaviors. Even though this thesis focuses on 
manipulating juvenile hormones, various hormones affect insect behavior.

Ecdysteroids are insect hormones that are known for regulating de-
velopmental processes like metamorphosis and molting (Truman & Rid-
diford, 2002). They were found to be involved in insect adult behaviors as 
well (Mirth & Riddiford, 2007). Variations in their levels have been linked 
to changes in multiple aspects of insects’ behavior. For example, research-
ers have found that fluctuations in vitellogenin, which is a yolk precursor 
protein impacted by ecdysteroid levels, trigger changes in foraging and 
labor behavior in honebees, Apis mellifera, impacting their ability to locate, 
acquire, and utilize food resources differently. (Amdam et al., 2003) More-
over, ecdysteroids levels influence reproductive activities, which influenc-
es mate-seeking behaviors, courtship rituals, copulation, and oviposition 
behaviors that are vital for reproductive success (Rauschenbach et al., 
2000). Additionally, ecdysteroids have been implicated in regulating circa-
dian rhythms and sleep patterns in some insect species such as adult fruit-
flies, Drosophila melanogaster, affecting their courtship memory (Ishimoto, 
Sakai, & Kitamoto, 2009). These regulations affect the timing and duration 
of locomotor activity, rest periods, and daily behavioral rhythms, which 
are all vital for optimizing resource allocation. Therefore, ecdysteriods play 
a significant role in insects physiology, behavior, and life history traits. 

Similarly, neuropeptides and neurohormones impact behavior 
through modulation of the nervous system. Neuropeptides like octopa-
mine serotonin play essential roles in regulating locomotor activities and 
feeding behaviors in Caenorhabditis elegans (Flavell et al. 2013). Addition-
ally, Andrews et al. (2014) found that octopamine modulates social be-
haviors, including aggression and courtship in Drosophila melanogaster. 
Furthermore, research on multiple organisms including honeybee and 
Drosophila melanogaster has found that octopamine is insects’ equiv-
alent of adrenaline and can influence arousal, motivation, and stress re-
sponses (Bobrovskikh & Gruntenko, 2023; Even, Devaud, & Barron, 2012). 
Thus, fluctuations in neuropeptides levels influence behaviors related to 
resource acquisition and predator avoidance. Likewise, neurohormones 
such as corazonin have been implicated in regulating behaviors related 
to insect stress responses and aggression (Zhao et al., 2010; Khan et al., 
2021). It functions similarly to the mammalian Gonadotrophin Releasing 
Hormone (GnRH), indicating its significant role in development, inter-
nal states, and behavioral decision-making. Corazonin regulates system-
ic growth, food intake, stress responses, and homeostasis by interacting 
with short Neuropeptide F (sNPF) and the steroid hormone ecdysone 
(Khan et al., 2021). Corazonin neurons also have a sex-dependent lifes-
pan differences under various stresses in Drosophila melanogaster (Zhao 
et al., 2010) Comparably, insulin-like peptides and adipokinetic hormones 
(AKH) influence feeding behaviors, metabolism, and energy balance in 
response to nutritional cues and environmental stressors (Koyama et al., 
2020). They act in a manner analogous to insulin in mammals, with effects 
on the insulin signaling pathway being central to stress resistance, lifes-
pan, and metabolic homeostasis (Zhang & Liu, 2014; Koyama et al., 2020) 

Lastly, insects’ sex hormones, which include ecdysteriods and juve-
nile hormones, play an essential role in regulating reproductive behaviors. 
They modulate sex-specific behaviors and sexual differentiation in insects 
as well as various other life-history traits (Pan, Connacher & O’Connor, 
2021). JH is the most well-known hormone in insects due to its involvement 
in many parts of their lives. It has been shown that an increase in JH levels is 
accompanied by an increase in mating behaviors and reproductive success 
in D. melanogaster and bedbugs (Flatt et al., 2005; Reiff et al., 2015; Gujar 
& Palli 2016). Similarly, an increase in JH titer is often correlated with in-
creased aggression (Pandey, Motro & Bloch, 2020). These findings highlight 
the importance of further investigating JH due to their complex and diverse 
involvement in insects’ life cycle from early development to adulthood.

1c) Juvenile Hormones

Juvenile hormones are a group of hormones that highly contrib-
ute to the development of insects, particularly regarding insects’ sexu-
al growth and maturation as well as morphology (Koeppe et al., 1985). 
They have been well-documented in their involvement in modulating 
the development of trait polymorphism and sexual dimorphism (Zera, 
2004; Guerra, 2011). Trait polymorphism refers to the occurrence of two 
or more distinct traits, such as color, size, or shape, within a population 
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of the same species. Usually, polymorphism allows a species to better 
adapt to the environment. For example, many butterflies’ populations 
have polymorphic wing patterns, allowing them to better blend into 
their respective environments (Wallbank et al., 2016). Whereas sexu-
al dimorphism refers to the sex-based differences in appearance within 
the same species. These differences are beyond their sexual organs. They 
can include variations in size, color, or the presence of certain phenotyp-
ic features. For example, peacocks tail feathers are sex-dependent where 
male peacocks have colorful tail feathers while the female peacocks 
have dim subdued feather coloration (Petrie, Halliday & Sanders, 1991). 

JH are insect acyclic sesquiterpenoids produced by the corpora allata 
(CA), which is a tiny factory-like organ near the insects’ brain that produces 
important hormones. The surgical removal of corpora allata eliminates the 
source of JH secretion (Yamamoto, R. et al., 2013). Acyclic sesquiterpenoids 
are a subgroup of complex organic chemicals called isoprene, which act 
as building blocks. Isoprenes come together in a particular way to create 
juvenile hormones. However, JH biosynthesis is controlled by neuroendo-
crine and neuronal factors (Shinoda, 2016). This means that the production 
of JH is complex and controlled by various conditions, which matches its 
role. The primary functions of JH are linked to molting, wing develop-
ment, and sexual maturation (Iwanaga, & Tojo, 1986; Koeppe et al., 1985). 
For instance, elevated levels of JH in caterpillars are associated with larval 
molting, whereas low JH levels signal the initiation of pupation, which 
leads to adult formation through metamorphosis (Yamamoto et al., 2013; 
Kayukawa et al., 2017). Likewise, wing development is influenced by JH in 
various degrees. For example, JH promotes Br–C expression, which in turn 
promotes wing growth and development in cockroaches (Fernandez-Nico-
las et al., 2022). Similarly, Zhang et al (2020) found that JH regulates flight 
capacity and migration within a sensitive period in armyworm, indicating 
the importance of time and the sensitivity of development to time win-
dows. Lastly, researchers have noted that JH levels fluctuate to reflect in-
sects’ reproductive organ development. For example, JH levels increase 
at the onset of sexual maturity, ensuring that reproduction occurs only 
when individuals are physically capable of it (Robinson & Vargo, 1997). 

During the pre-emergence stages of insects, JHs are involved in coor-
dinating the development and differentiation of various tissues and organs 
(Truman et al., 2024). They also regulate multiple essential processes, such 
as larval growth, metamorphosis, and the formation of adult structures and 
features. For example, JH delays metamorphosis until larvae reach an ap-
propriate stage (Smykal et al., 2014). They also prevent ecdysone-induced 
changes in gene expression, which are essential for metamorphosis (Gilbert, 
2000). This is essential for ensuring the emergence of the right structures. 
Thus, previous research has shown the importance of JH for shaping mor-
phology and developmental trajectories during those pre-emergence stages.

JHs continue playing an essential role in insects during the 
post-emergence stages. They are key to modulating biological process-
es such as ovarian maturation, behavior, caste determination, diapause, 
stress response, and life span during adulthood (Rahman et al., 2017). Par-
ticularly since JHs are secreted in different concentrations and levels by 
the corpus allatus throughout most of the insects’ life cycle. For example, 
blocking JH action in adult female Locusta migratoria eliminates the pro-
duction of the major yolk protein (vitellogenesis) or induce vitellogene-
sis with higher JH (Grozinger et al., 2014). Whereas in honeybees, studies 
have shown that JH acts as a behavioral peacemaker; as it regulates the 
speed in which worker bees grow, transition from nest activities to forag-
ing (Robinson & Vargo, 1997). These findings indicate JH’s role as a gonad-
otropin hormone with a variety of essential roles that are time dependent 
(Koeppe et al. 1985). For instance, early manipulation of JH during the 
adult stage has induced sexually dimorphic effects on the behavior of Dro-
sophila melanogaster’s mature adults (Argue, K. J. et al., 2013). The sexual-
ly dimorphic role for JH in the modulation of insects’ behaviors post-emer-
gence seems to be contingent on the age of adults (Argue, K. J. et al., 2013).

Guo, W. and colleagues (2020) explored the influence of JH on 
the behavior of locusts, which are a group of grasshopper species. Inter-
estingly, they found that JH induced a complete behavioral shift from 
attraction to repulsion and vice versa. Their study suggests the involve-
ment of JH in mediating a cascade of internal physiological processes 

that control how they act (Guo, W. et al., 2020). JH can do so by binding 
to specific receptors on target tissues and modulating gene expression. 
This modulation ultimately influences the development of traits men-
tioned earlier, like polymorphism, sexual dimorphism, and behavior.

Therefore, juvenile hormones and life history traits as well as 
trade-offs are intimately linked. They influence the direction of resource 
allocation. Thus, directing resource investment towards reproduction, 
survival, maturation, or growth. For example, in resource-limited con-
ditions, JH would prioritize survival over reproduction, which will 
lead to a delay in maturation, reduction in fecundity, or an increased 
investment in somatic maintenance (Dao-Wei Z. et al., 2019). The op-
posite would be expected to happen with an abundance of resourc-
es, where JH would favor allocating more resources for reproduction 
and sexual maturity in insects. As highlighted, juvenile hormones 
mediate many trade-offs that insects face under different conditions.  

1d) Development 

It is evident that insects undergo many trade-offs. However, some 
trade-offs are more well-documented than others. Nonetheless, many trade-
offs occur during the developmental stages. For instance, insects must bal-
ance investment in growth and body size with investment in reproductive 
processes and structures (Breiner, Whalen, & Worthington, 2022). Individ-
uals that allocate more resources to growth may delay sexual maturation 
and reproductive investment, potentially compromising their immediate 
reproductive success and vice versa (Barbosa, Rebar & Greenfield, 2018). 

 A well-documented developmental trade-off is between wing de-
velopment and reproduction. Researchers suggest that JH mediates trade-
offs between investment in wing development and reproductive efforts 
(Zera, 2004). This trade-off between wings and reproduction is a common 
phenomenon observed in insects, where resources allocated to wing devel-
opment may significantly impact the resources available for reproduction, 
influencing an insect’s fitness and survival in its environment (Zera, 2004; 
Contreras-Garduño et al., 2011). The trade-off between investing in wings 
versus reproduction is not just a matter of resource distribution. It also 
involves hormonal regulation, with JH being at the forefront of this regu-
latory mechanism. Therefore, explaining the mechanisms underlying the 
effect of hormones on development and trade-offs would allow us to gain 
a deeper understanding of how insects adapt to their environment. Espe-
cially because JH has a pivotal role in mediating this trade-off between 
wings and reproduction. This trade-off is evident in wing polymorphic 
insects. For example, Zera & Zhang (1995) showed that a reduced activity 
of juvenile hormone esterase, which is linked to a lower JH degradation, 
correlates with the development of short-winged morphs in the Jamaican 
field crickets. In other words, this means that higher JH levels are cor-
related with the development of short-winged cricket morphs. Alterna-
tively, aphids provide another interesting exploration pathway. Aphids 
are small yet ecologically significant pests. They exhibit an evolutionary 
adaptation known as wing dimorphism, where individuals within the 
same species can develop to be either winged or wingless morph. This 
adaptation occurs due to environmental challenges and pressures such 
as overcrowding and resource scarcity. Each one of the two morphs has 
its advantages, yet it comes at a cost. For example, winged morphs can 
disperse to new locations when conditions become unfavorable, allow-
ing the species to spread and find new resources. However, the disper-
sal comes at the cost of reproduction. On the other hand, the wingless 
morphs are more common when conditions are stable, focusing on rapid 
reproduction without the energy cost of developing wings (Blackman & 
Eastop, 2000). This evolutionary change represents a strategic adaptation 
that ensures the survival of aphids (Ogawa & Miura, 2014). Here, too, JH 
mediates the trade-off between wing development and reproduction. Re-
searchers have found that JH levels significantly affect the development of 
winged versus wingless morphs in aphids (Braendle et al., 2006). JH acts 
as a mediator between environmental and developmental cues (Brisson, 
2010; Braendle et al., 2006). In particular, high levels of JH are associated 
with the promotion of the wingless morph, encouraging rapid reproduc-
tion in favorable conditions (Braendle et al., 2006). Conversely, low JH 
levels can trigger the development of winged morphs, preparing individ-
uals for dispersal in response to environmental stressors (Braendle et al., 
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2006). Here, we see JH playing a pivotal role in developing both physi-
cal and mechanistic responses to environmental stressors and trade-offs.

1e) Bean Beetles

Bean beetles, Callosobruchus maculatus, were used to explore the 
aims of this research. These beetles typically have a reddish-brown to 
black coloration and measure around 2-4 millimeters in length as adults. 
Callosobruchus maculatus is a species that has been key to studying be-
havior (Gascoigne et al., 2021;), morphology (Gascoigne et al., 2021;), 
molecular and biochemical (Zelaya et al., 2020; Berasategui et al., 2021), 
as well as life-history traits and trade-offs (Gascoigne et al., 2021; Schade 
& Vamosi, 2012). They make a great match for understanding the hor-
monal influence on behavior for various reasons. In addition to having 
been used intensively, the bean beetle’s life cycle is key to understand-
ing the effect of hormonal manipulations. They undergo a complete 
life cycle, which consists of egg, larva, pupa, and adult beetle. They 
take around 4 weeks to emerge out of their beans and don’t require 
any food. Additionally, adult bean beetles experience short adulthood, 
lasting only 10 days, with 1-2 days to reach sexual maturity post-emer-
gence. Therefore, these characteristics of C. maculatus life cycle make it 
suitable for studying hormonal manipulation during early adulthood. 

Nonetheless, previous research is limited in outlining the role of 
JH during adulthood. This gap in knowledge presents an opportunity for 
further investigation into JH functions and mechanisms of action, partic-
ularly during adulthood. Thus, this study aims to explore the influence 
of JH during adulthood on morphology and behavior in bean beetles. 
Therefore, I intend to expand our understanding of the link between hor-
mones, behavioral, and morphological traits during adulthood. Addition-
ally, this project is an attempt to expand our understanding of the role 
that time and development periods have on behavior and morphology. 

1f) Research, Aim, and Hypothesis

Before exploring the study’s aim, we generated a hypothesis to pre-
dict the research findings. I hypothesize that in the adult stage, JH me-
diates behavioral traits in male and female C. maculatus with little to no 
impact on morphological traits. Specifically, higher JH titter will intensify 
mating behaviors in male and female bean beetles. Previous research done 
in the lab has started exploring the effects of JH on C. maculatus resource 
allocation on their behavioral and morphological traits. That research fo-
cused on manipulating JH during the larval stage and later measuring 
adult traits. Thus, allowing us to have a better understanding of the un-
derlying hormonal mechanisms mediating the hierarchical trade-offs in 
morphology and behavior pre-adulthood. Later it showed that morphol-
ogy, but not behavior, was influenced by the hormonal changes. There-
fore, the previous JH research imposes a need to investigate the role of 
JH during adulthood through looking at both morphology and behavior. 

Section 2: Data Science

Time is scarce. Driven by that thought and the need to optimize 
time, the idea for this project was born. More specifically, during my 
time at the Barbosa Lab, I lived and witnessed hours pass by as my 
lab mates and I attempted to classify and measure the various mor-
phological aspects of the dissected beetle. This lengthy process be-
comes time-consuming when dealing with hundreds of samples. 
Therefore, the main computational problem that my thesis explores 
is finding an automated measurement machine learning model and 
a classification model for the various classes using computer vision. 

2a) History of Machine Learning Evolution

The journey of machine learning (ML) began in the mid-20th 
century, rooted in the desire to create computational models that can 
adapt and learn from data. The first explorations in the field were in-
fluenced by Warren McCulloch and Walter Pitts’ work on cybernetics 
and the idea of neural networks in 1943 (Piccinini, 2020). These mod-
els were inspired by the understanding of biological processes and 

aimed to replicate the way human brains operate (Shepherd, 2010).

In the 1950s, Alan Turing proposed the concept of a machine that 
could learn and evolve (Turing, 1950). This concept was the base of the 
“Turing Test”, which became a criterion for intelligence (Turing, 1950). 
This era also saw the development of the Perceptron by Frank Rosenblatt 
in 1957, which is an early neural network that could perform simple clas-
sification tasks (Copeland, 2024). However, the excitement was tempered 
by the realization in the 1960s and 1970s that these early models had lim-
itations, particularly in their ability to solve non-linear problems or learn 
complex patterns, which killed the interest in ML and AI (Haigh, 2024; his-
tory, n.d.). Nonetheless, the 1980s witnessed a revival of interest in ML due 
to the introduction of new algorithms and models, including decision trees, 
Support Vector Machines (SVM), and backpropagation for neural networks 
(Polson & Sokolov, 2020; Rumelhart, Hinton, & Williams, 1986; Cortes & 
Vapnik, 1995). These developments, alongside increased computational 
power and the accumulation of larger datasets, set the stage for signifi-
cant advancements and the regeneration of people’s interests and hopes.

Following the 80s developments, the 1990s and 2000s wit-
nessed the consolidation of ML as a critical component of artificial in-
telligence, with the introduction of deep learning and reinforcement 
learning (Haigh, 2024; Li, 2018). This was particularly driven by the 
success of deep learning models, especially Convolutional Neural Net-
works (CNNs), in image recognition tasks, highlighting the potential 
of ML to address increasingly complex problems and non-linear tasks.

2b) Computational Review of the Evolution of Machine Learning

Here, I want to explore the evolution of machine learning through a 
mathematical lens. Especially since the history of machine learning is tied to in-
creasing complexity in mathematical models and computational techniques. 

Perceptron (1957): The Perceptron model is considered 
one of the earliest neural network architectures. It computes a 
weighted sum of its input features and applies a step function 
to determine the output class. Mathematically, the Perceptron’s 
decision function for an input vector x can be represented as:

where w denotes the weight vector, x represents the input fea-
ture vector, and b is the bias. This model laid the foundational com-
putational framework for later neural networks, illustrating the po-
tential of weight-based computation for classification tasks (Li, 2018).

Backpropagation (1980s): The discovery of the backpropaga-
tion algorithm marked a significant advancement in training multi-lay-
er neural networks and exploring non-linear relationships, which re-
vived the interest in ML. This algorithm uses the chain rule of calculus 
to compute gradients efficiently for each layer in a network. This process 
is essential for adjusting the network’s weights during training. Spe-
cifically, backpropagation calculates the gradient of the loss function 
with respect to each weight by the chain rule, enabling a systematic re-
duction in error through gradient descent optimization. The computa-
tional expression for updating a weight wij in the network is given by:

                                       
               

where η is the learning rate, L is the loss function, and (∂L/∂wij) 
represents the partial derivative of the loss with respect to the 
weight wij. This discovery laid the groundwork for the develop-
ment of deep learning (Sukhbaatar, Szlam, & Fergus, 2016; Li, 2018).

Support Vector Machines (1990s): SVMs introduce a differ-
ent approach to classification, focusing on the construction of an opti-
mal hyperplane that maximizes the margin between different classes. 
The primary goal of an SVM is to determine the optimal hyperplane 
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that separates classes in a feature space. The optimal hyperplane is the 
one that has the maximum margin, which is the largest distance be-
tween the hyperplane and the nearest points of any class (known as sup-
port vectors). The optimization problem can be formalized as follows:

 

where xi are the input vectors, yi are the class labels, w is the nor-
mal vector to the hyperplane, b is the bias, and ||w|| is the Euclidean 
norm of the vector w. This formulation leads to a convex optimization 
problem that ensures a global minimum allowing SVMs to handle lin-
ear and non-linear classification (Scholkopff, & Smola, 2001; Li, 2018).

Convolutional Neural Networks (CNNs): CNNs, a class of 
deep neural networks, are specially designed for processing data with a 
grid-like topology, such as images. A CNN autonomously learns hierar-
chical patterns in data through convolutional layers, which apply filters to 
capture spatial dependencies in input data. The operation within a convo-
lutional layer for a filter k can be mathematically described as:

Where S(i,j) represents the output of the convolution at point (i,j), I 
is the input image, K is the kernel (filter) applied to the image, and S is the 
feature map produced by the convolution, m is the row indices, and n is the 
column indices. This algorithm iterates over the entire image and applies 
the kernel in order to produce the feature map. This formula, combined 
with pooling layers and fully connected layers, enables CNNs to learn com-
plex patterns in data, from basic edges to intricate object features, which 
makes them exceptionally capable and suitable for complex image recogni-
tion tasks (Zagoruyko & Komodakis, 2017; Li, 2018; Alzubaidi et al., 2021).

2c) History of Computer Vision and Classification

Classification algorithms are at the heart of many machine learning 
and computer vision tasks. At its core, computer vision seeks to replicate 
the human visual system, allowing computers to identify, process, and 
interpret visual data (Blei and Smyth, 2017; Provost and Fawcett, 2013). 
The beginning of this field can be traced back to the 1960s with the emer-
gence of Artificial Intelligence and the work of Larry Roberts (Verdict, 
2020). Larry Roberts in 1963 worked on reconstructing 3D images from 
2D images, which marked the initial steps toward enabling machines 
to interpret visual data similarly to how humans do (Verdict, 2020).

However, computer vision’s early years were focused on ba-
sic tasks such as pattern recognition and simple object detection. These 
tasks were approached with rule-based algorithms that processed im-
ages as multi-dimensional arrays of pixel intensities. Techniques like fil-
tering, thresholding, and edge detection were developed to manipulate 
these pixel values for extracting meaningful information, which laid the 
groundwork for the present time’s more complex image understanding.

Therefore, during the 1970s and 1980s research efforts focused on 
the development of foundational algorithms for more advanced image 
processing tasks. These included complex edge detection, feature ex-
traction, and understanding the motion structure, crucial for recognizing 
shapes and objects within images. For example, in the 1970s, scientists 
started developing optical character recognition technology (Schantz, 
1982). This technology allowed computers to be able to recognize print-
ed text. Alternatively, in the 1980s, neuro and computer scientists like 
David Murr and Kunihiko Fukushima integrated their intersectional 
work to produce pivotal image and visual processing models, edge-de-
tecting algorithms, and neural networks’ convolutional layers (Russell, 
and Norvig, 2009; Li, 2018). Thus, this period was marked by an explo-
ration of how to accurately represent and categorize visual information, 
and integrating machine learning techniques, which allowed scientists to 
move from rule-based processing to models that could learn from data.

2d) Computational Review Main Computer Vision Concepts

Here, I will explore the main concepts of computer vision through 
a mathematical lens.

Edge Detection: Mathematically, edge detection can be seen through 
the lens of gradient calculation. The gradient of an image, represented 
as  (x,y), measures the change in intensity across the image. A popular 
method for finding edges is the Sobel operator, which approximates gra-
dients by convolving the image with a pair of 3x3 kernels, one estimating 
the gradient in the x-direction (Gx) and the other in the y-direction (Gy). 

The magnitude of the gradient is given by:

(BenHajyoussef, & Saidani, 2024)

Feature Extraction: Feature Extraction can identify and isolate 
meaningful attributes or characteristics within the image data. It translates 
raw image data into a format or set of features suitable for classification 
algorithms (Vega-Rodriguez, 2004). A common framework for feature ex-
traction is Principal Component Analysis (PCA), which seeks to reduce 
the dimensionality of the data while preserving as much variance as pos-
sible (Banerji, Zunker, & Sinha, 2020). It is essentially a process of simpli-
fying complex data. Imagine having a dataset with numerous variables, 
and some of these variables share similar information. PCA helps find a 
more straightforward way to express this data without losing much of its 
valuable information. It identifies the main patterns in the data (directions 
where there is the most variance) and redefines the dataset in terms of 
these patterns (Banerji, Zunker, & Sinha, 2020). This results in a simplified 
version of the data, where the most important trends are highlighted, and 
the less informative, redundant aspects are minimized. PCA involves cal-
culating the eigenvectors (non-zero vectors that do not change direction) 
and eigenvalues (magnitude of the stretch) of the data’s covariance matrix, 
then selecting those that correspond to the largest eigenvalues, and using 
them to transform the original data into a new space with reduced dimen-
sionality (Banerji, Sinha & Liu, 2012; Banerji, Zunker, & Sinha, 2020). Alter-
natively, a Histogram of Oriented Gradients (HOG) is used to obtain a rep-
resentation of the image’s shape and texture (Banerji, Sinha & Liu, 2012). 
It involves calculating and binning gradient directions across localized re-
gions of an image, which encapsulates the structure within a feature vector 
(Banerji, Sinha & Liu, 2012). In particular, HOG calculates each pixel’s gra-
dient’s magnitude and direction and then these gradients are accumulated 
in a histogram over specific image regions (Banerji, Sinha & Liu, 2012).

In other words, the image is divided into small, connect-
ed regions, called cells, and for each cell, a histogram of gra-
dient directions or edge orientations is compiled. The concat-
enation of these histograms then forms the feature descriptor.

2e) Feature Descriptor Techniques

In the field of image analysis, feature descriptors play a crucial 
role in transforming raw data into a more compact and expressive rep-
resentation for further processing. In this study, four main types of fea-
ture descriptors were used to extract meaningful information from im-
ages of bean beetles: Local Binary Patterns (LBP), Histogram of Oriented 
Gradients (HOG), Contour-Based features, and Color Histograms. Each 
one of these descriptors captures unique characteristics of the images, 
which are pivotal for the subsequent classification and analysis tasks. 

Local Binary Patterns (LBP) is a texture descriptor that is used ex-
tensively in image analysis due to its robustness and computational ef-
ficiency. LBP operates by comparing each pixel with its surrounding 
neighbors, assigning a binary code that results from the comparison. 
These binary codes are then compiled into a histogram, which serves 
as the final feature descriptor. LBP is particularly effective in captur-
ing fine textural patterns, making it well-suited for differentiating sub-
tle variations in texture that distinguish various morphological traits. 
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The Histogram of Oriented Gradients (HOG) descriptor is pri-
marily used for object detection and is highly effective at capturing 
edge and gradient structures. HOG works by dividing the image into 
small, interconnected regions known as cells, where for each cell, a his-
togram of gradient directions or edge orientations is compiled. The 
complied histograms get normalized over larger blocks of cells to im-
prove accuracy and provide resistance to illumination variations. 
The combination of these histograms forms the feature descriptor. 

Contour-Based features focus on capturing the shape and silhouette 
of objects within an image, which is achieved by analyzing the boundaries 
or contours of the objects. This technique is particularly useful for distin-
guishing objects based on their geometric and spatial characteristics. Nota-
bly, these features discard the information about the color distribution in the 
images. Therefore, the extracted features are a full representation of the edg-
es and shape of the object rather than the combination of that with its colors. 

Lastly, Color Histograms, on the contrary, are used to rep-
resent the distribution of colors within an image. By measuring the 
intensity of different color bins across the image, this descriptor 
provides a robust perception of color distribution which can be cru-
cial for classification tasks where color is a distinguishing feature. 

2f) Rationale, Hypothesis, and Aim

Based on the literature review and a thorough examination of the 
dataset, data types, and project needs, I hypothesize that using Support 
Vector Machine models would be able to classify the classes well. How-
ever, I anticipate challenges with feature extractions due to the nature 
of my images. Therefore, I predict a need for various feature extraction 
techniques in order to maximize classification accuracy. Further, I believe 
that the use of pre-trained machine learning models would be useful for 
further training a model to measure the length of the morphological trait. 
Therefore, I hypothesize that an intersection between manual and auto-
mated processes would lead to the best outcome when it comes to build-
ing a model with the highest measurement accuracy and best reliability.
METHODS AND MATERIALS

Beetles Population 
The study used individuals from a laboratory population at Lake 

Forest College. The population started in 2018 from hundreds of individu-
als from the strain of Callosobruchus maculatus. It is kept in several sealed 
4-L plastic containers with mesh tops for ventilation and adzuki beans. We 
maintained this population under a breeding protocol to avoid in-breeding 
of the population and any confounding variables. The protocol included 
daily and weekly check-ins, the addition of new adzuki beans when need-
ed, and clearing any dead or damaged beans using featherweight forceps. 

Egg lay and density Assignment  

To generate individuals for our study, we reared individuals from 
egg to adulthood under controlled larval density in clear 56-well plates 
with lids. We did this by adding a single adzuki bean and a single female to 
each well of the 56-well plate, for a total of 14 plates. Therefore, the females’ 
sexual history was unknown; however, they had access to males in the 
general population. Thus, the likelihood of having reached sexual maturi-
ty and successfully mated, at least once, was high. We allowed the females 
to lay eggs on the beans for a week. Then, to ensure the individuals fall into 
the medium density group, we removed any extra eggs by scraping the 
eggs off with the tip of a pair of featherweight forceps if a bean had more 
eggs than the needed range of 7-9 eggs per bean.  Alternatively, any bean 
that had fewer eggs than the needed range was kept in its well as is. The 
plates were stored in an incubator (Power Scientific environmental cham-
ber DS27SD) at 27°C under a 12L:12D photoperiod until the completion 
of the beetles’ emergencies from their beans. Adult beetles started emerg-
ing between 4 and 6 weeks after oviposition. Subsequently, all plates were 
checked multiple times daily for any emergencies starting at the 4-week 
mark. Any adult that merged was identified using a unique ID based on 
the plate number and well ID. For example, 1-F8 refers to the beetle from 
plate 1 that was recorded from well F8; wells are represented through a 
matrix that is vertically and horizontally labeled: A-F and 1-8, respectively.

Beetle Injections

We manipulated the beetles by randomly dividing them into 
different injection groups: Methoprene, Precocene, and Acetone. We in-
jected each emerging adult on the day of their emergence with 0.2 µL of ei-
ther one of those treatments using a Hamilton Syringe. All injections were 
intersegmental membrane (abdomen) injections. Beetles had a 24-hour pe-
riod to recover where they were kept isolated in their wells post-injection. 

Behavioral Assay 

To conduct the behavioral assays, experimental beetles were 
IDed, sexed, injected, and individually isolated in 1.5 mL centrifuge tubes 
on the day of their emergence. We only used one beetle per bean to re-
duce the biases in our data collection process. Non-experimental beetles 
were sexed and individually isolated in 1.5 mL centrifuge tubes on the 
day of their emergence. All beetles were massed prior to mating them, 
which happened 24-48 hours after their emergence to ensure their sexual 
maturity (Beck and Blumer, 2014) and recovery if injected. Mating events 
occurred in a petri dish with a lid where two beetles, experimental and 
non-experimental, of opposite sexes were recorded for the entirety of their 
mating duration. For all mating recordings, females were added first to 
have an accumulation period of 1-2 minutes to reduce handling and envi-
ronmental effects.

Dissections and Morphological Imaging/Measurements  

After the behavioral assay, females were individually left with 10 
beans in clear plastic cups with flat lids for 72 hours (3 days). When com-
pleted, females were put into 1.5 mL centrifuge tubes, and 70% ethanol 
was added to prepare for dissection. Both males and females were dissect-
ed using FST fine forceps with mirror finish, microscope, and Pyrex 9-well 
dissection plates. Appendages were mounted, to prepare for imaging, on 
either raised or non-raised coverslips based on whether their tissue is com-
pressible or not. All appendages were mounted in DHMF, a mixture of 
30g DHMF resin with 30 mL 70% ethanol. Table 1 references the details. 

Mounted specimens were imaged using Lecia stereoscope, 
digital camera, and imagining software application. These im-
aged appendages were measured using ImageJ. Table 2 refer-
ences the details of our operationalized measurement schema.

Table 1

Morphological Traits’ Mounting Details

This table groups by sex the morphological traits based on their mounting 
coverslip. All mounted specimens were stored in boxes at room tempera-
ture except for the gonads (Testes and Ovarioles), which were stored at 
–20C freezers to preserve them.

Table 2

Morphological Traits and Their Measurements

This table details a list of various morphological traits, their images, and de-
tailed descriptions of how they were measured on ImageJ to quantify them.
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Behavior Analysis

All behavioral analyses were quantified using BORIS, a video analy-
sis software. The recorded mating videos were uploaded to the software and 
behavior was quantified following the protocol outlined in Figures 1 and 2.

Males Behavioral Analysis 

Experimental males, the ones that were injected, were analyzed for 
their latency to antenate, latency to copulate, antennation duration, cop-
ulation duration, as well as the rate of antennation. The latency to anten-
nate is measured as the time it took the male to tap with one of the two 
antennas on the elytra or head of the female. Subsequently, the latency 
to copulate was measured as the time it took the male to start copulation. 
The duration of those two behaviors is the time they spend doing them, 
from start to finish. Lastly, average antennation rate is a proxy measure 
of the rate of antennation. Average antennation was calculated by aver-
aging the rates of 3 random periods (beginning, middle, and end) of the 
antennation duration. For each period of time, the number of taps of the 
antennae on the female’s back was counted, summed, and then divided 
by the duration of that segment (1-3 seconds). We repeated those mea-
sures twice, one focusing on the left antennae and the other on the right 
antennae; finally reporting the antennation rate as the average of both av-
erage antennation rates obtained. All male behavioral analyses were con-
ducted by two researchers and the average of their records was reported. 

Female Behavioral Analysis 

Experimental females, the ones that were injected, were an-
alyzed for their latency to kick, latency to copulate, kicking dura-
tion, copulation duration, as well as their initial clutch size. Latency 

to kick was measured as the time it took the female to start kicking af-
ter copulation. Subsequently, the latency to copulate was measured 
as the time it took for copulation to start. The duration of those two be-
haviors is the total timespan of those behaviors, from start to finish.

Figure 1. Males Behavioral Assay Timeline

A detailed explanation of the behavioral assay and schema followed to 

analyse male behavior on BORIS.

Figure 2. Females Behavioral Assay Timeline

A detailed explanation of the behavioral assay and schema followed to 
analyze female behavior on BORIS.

Statistical Analysis 

One-way ANOVA followed by Tukey-HSD post hoc tests were 
used to understand the data we collected as well as any significant dif-
ferences between the various treatments for both males and females. 
Prior to running the statistical analysis, all data were logarithmically 
scaled using the natural log transformation. This transformation was 
done to ensure that the data falls within the distribution assumptions 
for the parametric tests. Subsequently, statistical analysis for the mor-
phological traits was run for the relative logarithmically transformed 
data. Relative data was calculated by dividing the log-transformed 
morphological data by the log-transformed mass for each individual.  

In those one-way ANOVA tests, we explored behavioral measures 
such as male latency to antenate and copulate, the duration of antennation 
and copulation, and their antennation rate, expressed as the number of 
taps per second. For females, the one-way ANOVA tests explored laten-
cy to kick and copulate, the duration of those behaviors, and their initial 
clutch size. Lastly, we investigated morphological changes by perform-
ing six distinct morphological tests for females and males. The tests ex-
amined the size of antennae, elytra, legs, wings, gonads, and body mass. 

This comprehensive approach allowed us to capture the fol-
lowing detailed and comprehensive understanding of how juve-
nile hormones influence both behavioral patterns and the phys-
ical and morphological characteristics of adult bean beetles.

Image Dataset  

Through utilizing the laboratory images archive from the Bar-
bosa Lab, I collected 1190 images across the 6 measurement classes. I fol-
lowed that collection with data augmentation to populate new images 
from the existing ones to enhance the process of training and testing the 
sequential model and the automated measurement algorithm, see the data 
augmentation section below for reference. The number of images in each 
class varied after data augmentation, with the following totals: wings had 
625 images, elytra had 1415 images, antennas had 1387, ovarioles had 440 
images, testis had 736 images, and legs had 1375 images.

The images were all TIF type and were generated using Lecia 
stereoscope, digital camera, and imagining software application, as ex-
plained above, over multiple years at the Barbosa Lab in Lake Forest Col-
lege.
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Data Augmentation 

In this research, I chose to use three different methods to aug-
ment the dataset. To maximize the original dataset, I opted to apply 
the 4 augmentation methods to every picture. In other words, one im-
age would result in the creation of 4 new images in addition to itself. 

The data augmentation methods that I used were rotation, hori-
zontal flip, vertical flip, and noise addition. Firstly, the image was rotated 
90 degrees clockwise using OpenCV rotate method. Later, the image was 
flipped both vertically then horizontally using OpenCV flip method. Lastly, 
the 4th new image was generated through the addition of noise by adding 
a random Gaussian noise matrix to each channel of the image separately.

Image preprocessing

I preprocessed the images in the dataset before training the 
model to optimize and standardize the process. For this purpose, I uti-
lized the ImageDataGenerator class from the Keras library. The training 
data generator was configured to apply sample-wise centering and nor-
malization, horizontal and vertical flipping, and rescaling pixel values to 
the range [0, 1]. For the validation and test data generators, I applied the 
same preprocessing steps, except for flipping, to ensure consistency in data 
transformation across different sets. The data generators were then used to 
create batches of images and their corresponding labels, which were fed 
into the model during the training and evaluation phases.

Programming Language and Platform

I performed all statistical analysis using R studio. Addi-
tionally, I used Python and Jupyter Notebook to conduct all im-
age-related data manipulation, preprocessing, and image-re-
lated data manipulation, preprocessing, and model creation. 

Train-Test dataset

For the LinearSVM model, I randomly used 20 images from each 
class to train a classifier, and the rest of the images were used for test-
ing the classifier’s accuracy. Multiple classifiers were used depending 
on the feature morphology, which enhanced the classification’s accu-
racy. For instance, the classifier for wing and ovarioles extracted Lo-
cal Binary Patterns (LBP) features. On the other hand, Histogram of 
Oriented Gradients (HOG) features were extracted from testis imag-
es and used by another classifier for testis. Lastly, contour-based fea-
tures were extracted for classifying the legs, elytra, and antennas.

For the convolutional neural network linear regression mod-
el, I trained a sequential model to predict the lengths of wings using 
496 training images and then tested it on 124 testing images. The CNN 
architecture consisted of three convolutional layers, each followed by 
max pooling and dropout for regularization. The model was compiled 
with the Adam optimizer and mean squared error loss function. The 
training process was conducted over 200 epochs. The CNN had two 
inputs: wing images and an CSV file with wing lengths and filenames. 

RESULTS
Females Behavior

A one-way ANOVA test was performed on the pre-copulatory behav-
ior of latency to copulate. The tests showed a significant change in the laten-
cy to copulate with the manipulation of JH (F = 7.666, p = 0.000935, Fig. 3a). 

 Similarly, four one-way ANOVA tests were used to examine the 
impact of JH on latency to kick, kicking duration, copulation duration, and 
clutch size, representing female copulatory behavior. While kicking dura-
tion did not show a significant difference across the treatment groups (F 
= 1.817, p > 0.05, Fig. 3d), there was a significant effect of JH treatment on 
the latency to kick (F = 7.414, p = 0.00113, Fig. 3c), copulation duration (F = 
21.07, p = 5.05e-08, Fig. 3b), and the clutch size (F = 3.353, p = 0.0425, Fig. 4)

Figure 
3: Behavioral Measures of Female Bean Beetles 

The figure presents four boxplots illustrating key behavioral 
measures in female bean beetles: (a) latency to copulate, (b) copulation 
duration, (c) latency to kick, and (d) kicking duration. Each boxplot rep-
resents the distribution of data across treatment groups. Asterisks denote 
statistical significance levels: * indicates p < 0.05, ** indicates p < 0.025, 
and *** indicates p < 0.001. The results highlight significant differences 
in the behavioral responses of female bean beetles across experimental 
conditions
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Figure 4: Clutch Size of Female Bean Beetles. 

The figure presents a key behavioral measure in female bean 
beetles: initial clutch size across the three treatment groups. As-
terisks denote statistical significance levels: * indicates p < 0.05.

Females Morphology

The six one-way ANOVA tests were performed on morphologi-
cal traits: antennae, elytra, legs, wings, testes, and body mass. All six tests 
reported no difference across the treatment groups for all morphological 
traits, including antenna size (F = 0.068, p > 0.05, Fig. 5e), elytron size (F = 
1.399, p > 0.05, Fig. 5d), leg size (F = 0.322, p > 0.05, Fig. 5c), wing size (F = 
1.318, p > 0.05, Fig. 5b), ovarioles size (F = 0.563, p > 0.05, Fig. 5a), and body 
mass (F = 0.403,  p > 0.05, Fig. 5f). These results indicate the lack of effect JH 
has on morphology during adulthood in female bean beetles.

Figure 5: Morphological Measures of Female Bean Beetles 

The figure displays six boxplots illustrating morphological mea-
sures in female bean beetles: (a) ovarioles size, (b) wing size, (c) leg 
size, (d) elytron size, (e) antennae size, and (f) body mass. Each boxplot 
represents the distribution of data across treatment groups. Asterisks 
indicate levels of statistical significance: * denotes p < 0.05, ** denotes 
p < 0.025, and *** denotes p < 0.001. The figure illustrates that juvenile 
hormone (JH) manipulation during adulthood does not induce signifi-

cant alterations in the morphology of female bean beetles, as evidenced 
by the non-significant differences across the measured parameters.

Males Behavior

The four one-way ANOVA tests were performed on pre-copulatory 
behaviors, latency to antenate, latency to copulate, antennation duration, 
and antennation rate. While antennation rate did not show a significant 
difference across the treatment groups (F = 0.619 , p > 0.05, Fig. 7), there 
was a significant effect of JH treatment on the latency to antennate (F = 
5.263, p = 0.00726, Fig. 6c), latency to copulate (F = 10.04 , p = 0.000137, 
Fig. 6a), and the antennation duration (F = 3.303, p = 0.0422, Fig. 6d) 

Similarly, a one-way ANOVA test was used to examine the im-
pact of JH on copulation duration, representing male copulatory be-
havior. The test showed no change in the duration of the copulato-
ry behavior with the manipulation of JH (F = 0.403, p > 0.05, Fig. 6b).

Figure 6: Behavioral Measures of Male Bean Beetles  

The figure presents four boxplots illustrating key behavioral mea-
sures in female bean beetles: (a) latency to copulate, (b) copulation duration, 
(c) latency to antenate, and (d) antennation duration. Each boxplot rep-
resents the distribution of data across treatment groups. Asterisks denote 
statistical significance levels: * indicates p < 0.05, ** indicates p < 0.025, and 
*** indicates p < 0.001. The results highlight significant differences in the 
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behavioral responses of male bean beetles across experimental conditions

Figure 7: Antennation Rate of Male Bean Beetles

The figure presents a key behavioral measure in male 
bean beetles: average antennation rate across the three treat-
ment groups. n.s denote statistical non-significance.

Males Morphology

The six one-way ANOVA tests were performed on morphological 
traits: antennae, elytra, legs, wings, testes, and body mass. All six tests 
reported no difference across the treatment groups for all morphological 
traits, including antenna size (F = 0.185, p > 0.05, Fig. 8e), elytron size (F 
= 0.484, p > 0.05, Fig. 8d), leg size (F = 0.126, p > 0.05, Fig. 8c), wing size 
(F = 0.273, p > 0.05, Fig. Yb), testes size (F = 0.184, p > 0.05, Fig. 8a), and 
body mass (F = 0.330,  p > 0.05, Fig. 8f). These results indicate the lack 
of effect JH has on morphology during adulthood in male bean beetles.

Figure 8: Morphological Measures of Male Bean Beetles  

The figure displays six boxplots illustrating morphological mea-
sures in male bean beetles: (a) testes size, (b) wing size, (c) leg size, (d) 
elytron size, (e) antennae size, and (f) body mass. Each boxplot represents 
the distribution of data across treatment groups. Asterisks indicate levels 

Figure 9: Confusion Matrix of 6 Classifiers Performance

The confusion matrix provides a comprehensive visualization of the 
performance of six classifiers across multiple classes. Each row of the matrix 
represents the actual classes, while each column represents the predicted 
classes. The elements of the matrix indicate the percentage of instances belong-
ing to each class that were correctly or incorrectly classified by the respective 
classifiers. A lighter-colored box indicates a higher classification accuracy. 

Automated Morphological Measurement

The performance of the CNN model was evaluated on both the 
training and test datasets. The following metrics were obtained: Mean 
Squared Error (MSE) on the test set: 0.01897, Root Mean Squared Er-
ror (RMSE) on the test set: 0.13772, Mean Absolute Error (MAE) on the 
test set: 0.11006. The model demonstrated a reasonable degree of ac-
curacy in predicting the lengths of beetle wings, with an R-squared 
value of 0.63475 indicating that approximately 63.48% of the vari-
ance in the actual lengths is explained by the model’s predictions
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Figure 10. Scatter Plot of Actual vs Predicted Lengths of Test Data

This scatter plot illustrates the performance of the convolution-
al neural network (CNN) model on the test data. Each point represents 
an individual prediction, with the actual lengths on the x-axis and the 
predicted lengths on the y-axis. The red line indicates the line of per-
fect prediction where the predicted lengths would exactly match the 
actual lengths. The clustering of points around this line suggests a pos-
itive correlation, indicating the model’s effective predictive ability.

Figure 11. Scatter Plot of Actual vs Predicted Lengths of Training Data

This scatter plot displays the CNN model’s prediction accuracy on 
the training data. Each blue point corresponds to a single observation, with 
the x-axis showing the true lengths and the y-axis depicting the model’s pre-
dictions. The red line represents the ideal scenario where predictions would 
be precisely equal to the true values. The distribution of points around the 

line demonstrates the model’s learning trend during the training phase.

DISCUSSION

Section 1: Hormonal Manipulation

1a) Findings, Impact, and Importance

This research illustrated that an increase in Juvenile Hormone titer 
in both female and male bean beetles during early adulthood increases 
the intensity of their copulation behaviors without affecting their mor-
phological traits. These findings are consistent with the expectations of 
previous research done in the Barbosa lab that investigated the role of 
JH in larvae. Specifically, previous research showed that the manipula-
tion of JH in the larvae stage leads to morphological manipulation with 
little to no behavioral alterations. Thus, we expected the manipulation 
of JH during the adult stage to lead to the opposite. These expectations 
were met in the results of this research. More specifically, this research 
found that females’ copulation duration and the time it takes them to start 
copulating (latency to copulate) and kicking (latency to kick) decreased 
with higher JH levels (Methoprene). Yet, the number of eggs they laid in 
a week (initial clutch size) increased in comparison to individuals treat-
ed with the JH inhibitor, Precocene. These findings indicate a potential 
trade-off between copulation behaviors and reproductive output. In 
other words, females that spent less time copulating had better success 
with laying more eggs. In males, a similar pattern was detected. Individ-
uals treated with the JH analog started copulating and antennating more 
quickly than JH inhibitor-treated individuals. This suggests the distinct 
roles of different JH-related compounds in regulating the initiation of 
reproductive behaviors in males and females. Furthermore, while their 
antennation rate remained unchanged, their antennation duration in-
creased. This potentially suggests some refined communication or mate 
recognition strategies in response to hormonal changes in bean beetles. 

These findings illustrate a novel understanding of the role of JH in 
bean beetles’ development and its influence in shaping their sexual and re-
productive behaviors. Moreover, they outline a distinct separation between 
behavioral changes and morphological traits. This separation highlights 
the complexity of the hormonal-behavioral relationship and the need for a 
comprehensive understanding of the connections between hormones, be-
havior, morphology, and evolutionary processes in the animal kingdom. It 
also underscores the importance of timing in development, as it relates to 
the distinct roles of hormonal organizational and activational effects in de-
velopment. Organizational effects, which occur during early critical devel-
opmental periods, lay the foundation for future physiological and behav-
ioral patterns, while activational effects, which occur later in life, trigger 
the activation of specific behaviors or physiological responses. Therefore, 
organizational effects create permanent changes in the neural substrates 
that control behaviors, which lead to the development of the nervous 
system and behavior along separate developmental pathways (Elekonich 
& Robinson, 2000). These organizational effects ultimately influence the 
manifestation of behaviors later in life by causing variation in the develop-
ment of individuals within particular pathways. On the other hand, activa-
tional effects modify the neural activities within the pre-existing pathways 
during adulthood. They influence behaviors in response to environmental 
or social conditions. However, they are typically reversible (Elekonich & 
Robinson, 2000). It is crucial to understand the influence of those effects 
on trade-offs and behavior. Thus, this research reinforces the need for a 
deeper understanding of the mechanisms underlining the relationship be-
tween trade-offs and hormones, particularly in the context of their orga-
nizational and activational effects throughout the developmental stages.

1b) Limitations

While the study provides some insightful results, there are some 
limitations that could have influenced the findings and should be consid-
ered. Firstly, attempting to quantify both behavior and morphology to 
assess the role of JH forced us to operationalize those definitions. Those 
previously and consistently used definitions could influence the inter-
pretation of the findings. For example, we measure the size of the wing, 
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elytra, and leg by measuring their length instead of their area to ensure 
both consistency and less confounding variables. However, measuring 
their area could lead to better insight into the morphological alterations. 
In particular, area measurements, unlike length measurements, provide 
a 2-dimensional representation of the body part as it records the width 
and length. This could provide better insight into understanding the hor-
monal effects on the overall size, both width and length. Secondly, JH ma-
nipulations were achieved through manual injections using a Hamilton 
syringe. Those injections may have introduced a stressor, that was miti-
gated by a 24-hour rest period. Alternatively, there may have been some 
variations in the quantity of solution that was absorbed by the individu-
al beetles, leading to some inconsistency in the experimental procedure. 
Lastly, we used the same dosage for all individuals without correcting for 
body size. This could have led to variations in the hormonal effects ob-
served because smaller individuals may have experienced a higher dose 
per milligram of body mass compared to larger individuals and vice versa. 

1c) Future Studies

The findings of this study pave the way for a variety of future direc-
tions in exploration of the role of JH in bean beetles. For instance, to further 
understand mating behaviors, future studies could focus on reintroducing 
JH-analog in males and females after initially inhibiting its production. This 
experiment would highlight the possibility for the reversibility and plastici-
ty of JH influence on copulation behavior and mating output. One poten-
tial issue with such a study would be introducing a second mating session, 
which is difficult to occur for bean beetles. Additionally, investigating the 
temporal aspects of JH effects is crucial for a comprehensive understand-
ing. In this study, JH manipulation occurred within the first 12 hours after 
emergence. Future studies could explore how the timing of JH manipulation 
during different post-emergence stages influences mating behaviors and 
reproductive outcomes. This can highlight any developmental windows 
for behavioral changes that bean beetles have. Furthermore, future stud-
ies focusing on exploring the long-term effects of Juvenile Hormone (JH) 
manipulation across multiple generations could offer us valuable insights 
into the generational impact and evolutionary trajectory of bean beetles.

More importantly, the findings of this study highlight the im-
portance of further exploring the complex relationship between hor-
mones and behavior. In an attempt to do so, future research can focus 
on exploring the interactions between JH and other hormones that con-
tribute to the network of hormonal influences on sexual maturation 
and mating behaviors. These studies can investigate the interactions of 
ecdysteroids, insulin-like peptides (ILPs), and neuropeptide in addi-
tion to JH. Ecdysteroids is crucial for metamorphosis; whereas ILPs in-
fluence growth, development, and reproduction; and neuropeptides are 
key for physiological processes in insects including the regulation of JH. 
Therefore, expanding our knowledge of the network of insects’ endo-
crine system is essential to grasp a holistic understanding of bean bee-
tles’ sexual maturation and behavior. Besides, examining the presence 
of any trade-offs or evolutionary contexts within that network allows 
for a better appreciation of the adaptive processes within these species. 

Section II: Automated Measurement ML Model

2a) Findings, Impact, and Importance

It has also generated a high level of accuracy in classifying 6 com-
plex bean beetle morphological features using 6 LinearSVC models. Those 
models were unique based on the morphological features in hand. For 
instance, the testis model extracted HOG feature descriptors, whereas 2 
models used LBP feature descriptors to classify wings and ovarioles. Last-
ly, 3 models used the concatenated feature descriptors of contour-based 
features and color histogram to classify legs, elytra, and antennas. The 
models showed the following accuracies 100%, 99%, 90%, 62%, 72%, 
and 83% for classifying the testis, wings, ovarioles, legs, elytra, and an-
tennas, respectively. Therefore, the classifiers have an overall accuracy 
of 84%. This indicates a high level of ability for the computer to classify 
morphological features’ images, especially if they are images of gonads 
or wings. Nonetheless, the classifiers are finding it difficult to classify im-
ages with tail-like shapes in them, as in the antenna and the legs. Simi-

larly, images of the wing covers (elytra) have thread-like shapes in them 
due to the mounting technique in the laboratory. Therefore, I predict that 
with better mounting, elytra’s classification would become more accurate.

These findings shown in the results section illustrate the best out-
comes from multiple models developed as well as a variation of descrip-
tors and parameters used. It is vital to understand the difference between 
those models, what worked best in each one of them, as well as the impact 
each one had on my research. The journey to achieving an overall accu-
racy of 84% started off with a model with an accuracy of 40% at classify-
ing the classes correctly. This model, labeled Model1, used Local Binary 
Patterns (LBP) to extract features from the images. A closer look at the 
performance across the different classes revealed significant variations: 
while Model1’s LBP excelled in identifying wings and ovarioles with 
accuracies of 89% and 99%, respectively, it failed drastically with other 
classes such as antenna (5.9%), testis (8.4%), elytra (5.7%), and legs (0.3%).

This uneven performance prompted me to incorporate Histogram 
of Oriented Gradients (HOG) in Model2. HOG is known for capturing 
edge and gradient structures that could complement the texture informa-
tion from LBP. This addition improved the classification results by 22%. 
The overall model accuracy jumped to 62%, with notable improvements 
in the previously underperforming class of testis whose accuracy rose to 
81%. However, despite these gains, some classes like antenna (43%), elytra 
(30%), and legs (26%) remained poorly classified, prompting further explo-
ration and improvements in the model. Therefore, in Model3, I introduced 
contour-based features for the antenna, elytra, and legs, while retaining 
HOG for the testis and LBP for wings and ovarioles. This adjustment led to 
a further increase in accuracy to 69%. The new contour features significant-
ly improved the antenna classification to 87%, but elytra and legs contin-
ued to present challenges, with leg classification accuracy at 41% and elytra 
at 0%. Notably, there was a high rate of misclassification with elytra being 
confused as antenna 59% of the time and legs as antenna 75% of the time.

To address these persistent issues, I experimented with color histo-
grams in Model4, although this change reduced the overall accuracy slightly 
to 67%. The model still struggled with distinguishing between similar-look-
ing classes, leading to a continued poor performance in classifying elytra.

Finally, in Model5, I adopted a concatenated approach com-
bining the strengths of different descriptors for the problem-
atic classes. This strategy significantly boosted the model’s ef-
fectiveness, resulting in an overall accuracy of 84%. This model 
achieved impressive class-specific accuracies: antenna (83%), testis 
(100%), elytra (72%), ovarioles (90%), legs (62%), and wings (99%).

This iterative process of refining the feature descriptors not only 
enhanced the model’s accuracy but also highlighted the importance 
of choosing appropriate descriptors based on the specific character-
istics of each class. For instance, I predict that LBP’s effectiveness at 
capturing fine texture details is likely what contributed to its high ac-
curacy in classifying wings and ovarioles. These classes have distinct 
textural patterns that LBP could efficiently detect and differentiate. 

Similarly, HOG descriptors are particularly excellent at detecting 
edge directions and gradients, which proved beneficial for classes such as 
the testis where structural edges and shape contours are more pronounced 
and specific to their shape. This helped in distinguishing the testis from 
other classes and allowed them to stand out. However, HOG was less ef-
fective for classes like elytra and legs, where the edges and gradients might 
be more overwhelmed by the background variations as well as the simi-
larities across each other. Additionally, contour-based features are specif-
ically designed to capture boundary shapes and contours while dicarding 
information about the color of the images. This unique approach signifi-
cantly improved the classification of the antenna, a class where the shape 
and silhouette are distinctive when highlighting its detials. Nonetheless, 
this advantageous characteristic failed to effectively classify the elytra and 
legs. This might be due to the similarity in contours or overlapping fea-
tures among these classes, which led to high misclassification rates. Con-
trarily, color histograms can provide useful classification signals based 
on the unique color distributions of the images. The poor performance in 
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classifying elytra suggests that color histograms alone are insufficient to 
capture the necessary distinguishing features. Therefore, the concatenated 
features allowed for the combination of multiple descriptors, which lever-
ages the strengths of each to address their individual weaknesses. For in-
stance, the use of color histogram and contour-based features allowed the 
model to better classify and effectively identify legs, elytra, and antenna.

The CNN model’s success in this study is a critical milestone in the 
application of deep learning to biological research, offering significant 
advancements in the automated measurement of morphological features. 
The model’s capabilities were particularly exemplified by its precision in 
assessing straight-line measurements on beetle wings from a diverse im-
age dataset. Notably, the model accomplished this with a limited num-
ber of images by learning from augmented data, illustrating its efficacy in 
feature recognition and length estimation under constrained conditions. 
These findings have considerable implications for the field, as they indi-
cate that even with limited data, neural network models can be trained to 
perform complex tasks with a high degree of accuracy. These computa-
tional capabilities not only conserve valuable research time but also reduce 
the potential for human error in morphometric analyses, leading to more 
reliable and reproducible studies. The importance of such a development 
cannot be overstated, particularly in fields where precision is vital. This is 
why it is crucial to invest resources and time to better equip such a model.

The development of my CNN regression model was charac-
terized by an iterative process of tuning and refinement, aiming to 
enhance the accuracy of predicting beetle wing lengths. The jour-
ney began with a basic sequential neural network and involved sys-
tematic modifications to various model parameters, such as batch 
sizes, epochs, kernels, and the architecture itself, including the ad-
dition or removal of layers and adjustments to pooling layer types. 

The CNN regression model was adjusted and built similar-
ly to the classes’ classifier, where each subsequent model version 
aimed to address specific shortcomings identified in the preceding ver-
sions. In particular, I focused on the gradual decrease in MSE, RMSE, 
and MAE across the models, which indicates effective enhancements 
in model precision and accuracy. I also focused on increasing the 
R-squared value to demonstrate an improved ability of the models to 
explain a greater proportion of variance in the wing measurements. 

The first model built, Model1, set a baseline with a Mean Squared 
Error (MSE) of 0.075 and an R-squared value of 0.30. These results yield-
ed poor length predictions that fell far from the actual lengths of wings. 
Therefore, in Model2, I increased the epochs to test for lack of convergence 
due to limitations in the number of iterations and learning steps. Model2 
performed better than Model1, with an MSE of 0.052 and an R-squared 
of 0.40. However, this improvement was not enough to reach accurate 
and reliable predictions. Therefore, Model3 incorporated the addition of 
more complexity by adding more convolutional layers and dropout lay-
ers. However, despite these changes, Model3 resulted in an unexpected 
decrease in performance. Particularly, there was a drop in the MSE to 0.60 
and the R-squared to 0.32. This highlighted some of the challenges of man-
aging model complexity, learning effectiveness, and sensitivity to changes. 

Model4 tried to address this setback by retracting the changes 
on the convolutional and dense layers and instead implementing alter-
ations on the pooling layers types from max to average and further in-
creased the dropout rates. By inducing those changes, I aimed to refine 
feature extraction and enhance the model’s learning. Unfortunately, 
these changes also led to a degradation in performance, showcasing an-
other example of the difficulty in fine-tuning CNN architectures for 
specific measurement tasks. Nonetheless, Model5 represented the cul-
mination of the various refinements and was designed to integrate 
the most effective features and strategies from the previous models 
while incorporating new optimizations to address prior shortcomings. 

Model5, which yielded the best-reported results, begins with a 
convolutional layer that has 32 filters with the capability to process input 
images of size 480x640. This layer is critical for initial feature extraction, 

such as edges and simple textures. Following the first layer, a more com-
plex convolutional layer with 128 filters was added, which allowed for the 
extraction of higher-level features from the reduced spatial dimensions of 
the previous pooling layer. Additionally, a third convolutional layer with 
64 filters further refines the feature map to capture even more detailed 
attributes crucial for accurate morphological assessments. As mentioned, 
in between each convolutional layer is followed by a max pooling layer 
and a dropout layer. The max pooling layers reduce the spatial dimen-
sions of the feature maps, which makes feature detection computational-
ly less costly and helps in making the detection of features invariant to 
scale and orientation. Similarly, the addition of dropout layers after each 
pooling step and dense layers randomly disables a fraction of the neu-
rons during training, preventing overfitting and ensuring that the mod-
el generalizes well to new, unseen data. Lastly, the model had flattening 
and dense layers that aim to reduce the number of neurons to combine 
the features into patterns that are more abstract and representational of 
the input data. For instance, the flattening layer converts the 2D feature 
maps into a 1D vector, making it possible to feed into dense layers. The 
subsequent dense layers progressively reduce the number of neurons, 
first to 64 and then to 16, allowing for the combination to occur. Final-
ly, the final dense layer reduces the output to a single neuron that pre-
dicts the length of beetle wings, which represents the regression output.

2b) Limitations

	 The tool created in this research is inherently limited due to 
biases and limitations within the dataset itself. Therefore, the models 
can get as good as their dataset. The dataset I used is for a bean beetle 
population that was used in a research laboratory. Therefore, I had to 
populate images out of the pre-existing dataset due to the limited num-
ber of images available. This process could have been eliminated by 
having access to a big dataset of images, which would have reduced 
the biases in the image set. Due to the need for various feature descrip-
tors to train the classifiers, my models are time-consuming. Therefore, 
they require a relatively high level of computational power to train. 

	 On the other hand, the wing measurement convolutional neu-
ral network model also has some limitations. It was designed to measure 
straight lines, which assumes that the wings are fully spread and prop-
erly aligned in the image. In cases where the beetle’s wings are not ful-
ly extended or overlapped, the model might not accurately measure the 
length. Furthermore, the model’s accuracy depends on the precision of 
the initial annotations used for training. If the annotated lengths were 
not exact due to human error, this could have introduced an additional 
source of error that the model would propagate. Finally, due to compu-
tational constraints, the model was trained for a fixed number of epochs 
which may not have been sufficient to reach the optimal performance. 
With more time and resources, further tuning of the hyperparameters and 
extended training could potentially improve the model’s performance. 

2c) Future Studies

This work highlights the possibility of further utilizing machine 
learning in research. It also further underscores the importance of uti-
lizing intersectional knowledge and skills to optimize time and energy. 
It also paves the way for future enhancements and other applications. 
For instance, future studies could utilize intersectional collaboration 
to develop better behavior assay analysis tools. This would better stan-
dardize the process and lead to a decrease in human inconsistencies. 
Similarly, building a better classification tool would allow the research-
ers to rely on the computer to sort through their images and organize 
their folders. This means that future work could focus on building bet-
ter feature descriptors for the legs, elytra, and antenna where the clas-
sifiers focus on more prominent parts of those morphological traits. 

While my methodology has demonstrated promising results, 
there is always room for refinement and enhancement. Future studies 
could focus on optimizing various aspects of the pipeline, including al-
terations in the parameters, data preprocessing techniques, and classifier 
architectures. They should also focus on refining the process of training, 
where the manually measured images could be measured more pre-
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cisely to reduce learning noise. Besides, future studies should focus on 
covering the measurement process for all of the morphological traits of 
interest in the Barbosa Lab. Afterward, I’d be interested in applying my 
model and classifier to other species and beetle populations to exam-
ine the accuracy of their results. Ideally, these models would be able to 
adapt and generalize their power to a bigger dataset than the one in hand. 

Conclusion

This research has provided insights into the role of Juvenile Hor-
mone (JH) in the sexual and reproductive behaviors of adult bean bee-
tles. It has also introduced the development of automated classification 
and a wing measurement tool using machine learning and neural net-
work techniques. The findings of this research highlight the fascinat-
ing relationship between hormones, behavior, and trade-offs with an 
emphasis on the importance of timing within this relationship. In par-
ticular, this research showed the impact of juvenile hormones during 
adulthood, where a higher level of JH induced an intensified behavior-
al activity in both male and female bean beetles without significant im-
pact on their morphology. Thus, the findings suggest that JH plays a 
critical role in regulating sexual behaviors in both male and female bean 
beetles, with significant effects observed in latency to copulate, laten-
cy to kick, copulation duration, and clutch size for females, and latency 
to antennate, latency to copulate, and antennation duration for males.

	 The development of the automated measurement tool demon-
strates the potential of machine learning in streamlining many process-
es and analysis stages in research. Further, this research has shown the 
possibility of using classification for categorizing and identifying vari-
ous traits and areas of focus in research, which can optimize time. The 
classifiers demonstrate high accuracy in classifying testes, wings, and 
ovarioles, with lower accuracy observed for legs, elytra, and antennas. 
The development of those LinearSVC models for classifying morpho-
logical features and a sequential neural network model for automating 
wing length measurement represents a significant step forward in the 
automation of morphological measurements, with potential applica-
tions in various fields of biological research. However, this research 
highlights the importance of consistency of data collection in labora-
tories as limitations to those models arise with limited datasets, mak-
ing them limited in their precision. Therefore, an expansive dataset 
would generate more generalizable, complex, and applicable models.

Note: Eukaryon is published by students at Lake Forest Col-
lege, who are solely responsible for its content. The views ex-
pressed in Eukaryon do not necessarily reflect those of the College.
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APPENDIX 

1) R code for statistical analysis 

1a) Males one-way ANOVA test and post hoc test

```{r} 

selected_vars		   <- 		  c(“LOG_M_MASS”, 

“ L O G _ A V G _ A N T _ R A T E ” , ” L O G _ L A T _ A N T ” , ” L O G _ D U R _
ANT”,”LOG_LAT_COP”,”LOG_DUR_COP”)

# a list to store ANOVA results

anova_results <- list()

tukey_results <- list()

plots <- list()

# one-way ANOVA for each variable

for(var in selected_vars) {

  formula <- as.formula(paste(var, “~”, “Treatment”))

  anova_result <- aov(formula, data = JH23_males)

  tukey_result <- TukeyHSD(anova_result)

  tukey_results[[var]] <- tukey_result

  anova_results[[var]] <- summary(anova_result)

  plot <- ggplot(JH23_males, aes(x = Treatment, y = !!sym(var))) +

    geom_boxplot(fill = “lightblue”) +

    labs(x = “Treatment Group”, y = var, title = var)

  plots[[var]] <- plot  

}

# summaries of the ANOVA results for each variable

for (var in selected_vars) {

  cat(“one-way ANOVA for”, var, “\n”)

 print(anova_results[[var]])

  cat(“\n”)

  cat(“Post Hoc Test for”, var, “\n”)

  print(tukey_results[[var]])

  cat(“\n”)

}

```{r}

selected_vars		   <-		   c(“LOG_M_MASS”, 

“relative_LOG_Testes”,”relative_LOG_Antenna”,”relative_LOG_
Wing”,”relative_LOG_Leg”,”relative_LOG_Elytra”)

# a list to store ANOVA results

anova_results <- list()
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tukey_results <- list()

 

# one-way ANOVA for each variable

for(var in selected_vars) {

  formula <- as.formula(paste(var, “~”, “Treatment”))

  anova_result <- aov(formula, data = JH23_males)

  tukey_result <- TukeyHSD(anova_result)

  tukey_results[[var]] <- tukey_result

  anova_results[[var]] <- summary(anova_result)

}

# summaries of the ANOVA results for each variable

for (var in selected_vars) {

  cat(“one-way ANOVA for”, var, “\n”)

  print(anova_results[[var]])

  

cat(“\n”)

  cat(“Post Hoc Test for”, var, “\n”)

  print(tukey_results[[var]])

  cat(“\n”)

}

```

1b) males box plots

```{r}

group_colors <- c(“Control” = “lightyellow”, “Meth” = “lightgreen”, 
“Prec” = “lightpink”)

plots <- list()

selected_vars <- c(“LOG_M_MASS”, “LOG_AVG_ANT_RATE”, “LOG_
LAT_ANT”, “LOG_DUR_ANT”, “LOG_LAT_COP”, “LOG_DUR_COP”)

# Function to create, print, and save plots with a specified aspect ratio, re-
moving outliers create_print_save_plots_no_outliers <- function(log_col, 
plot_width, y_range) {

  # Calculate the IQR

  Q1 <- quantile(JH23_males[[log_col]], 0.25)

  Q3 <- quantile(JH23_males[[log_col]], 0.75)

  IQR <- Q3 - Q1

  # Define the lower and upper bounds for identifying outliers

  lower_bound <- Q1 - 1.5 * IQR

  upper_bound <- Q3 + 1.5 * IQR

  # Filter the data to exclude outliers

 data_filtered <- JH23_males[JH23_males[[log_col]] >= lower_bound & 
JH23_males[[log_col]] <= upper_bound, ] 

  plot <- ggplot(data_filtered, aes(x = Treatment, y = !!sym(log_col), fill = 
Treatment)) + geom_boxplot(color = “black”) +

    scale_fill_manual(values = group_colors) +

    labs(x = “Treatment Group”, y = “ln”, title = log_col) +

    theme_minimal() +

    theme(panel.grid.major = element_blank(), panel.grid.minor = element_
blank(), axis.line = element_line(color = “black”)) +

    ylim(y_range) +

    guides(fill = FALSE)

  # Calculate the dimensions for saving the plots

  plot_height <- 2

  plot_width <- 2

  # Print the plot

  print(plot)

  # Save the plot with the specified dimensions

  ggsave(paste0(log_col, “_plot_males.tiff”), plot = plot, width = plot_
width, height = plot_height)

}

# Iterate through selected variables and create/print/save plots without 
outliers

for (log_col in selected_vars) {

  y_range <- c(min(JH23_males[[log_col]]), max (JH23_males[[log_col]]))  # 
Adjust the y-axis range as needed

  create_print_save_plots_no_outliers(log_col, plot_width, y_range)

} 

```

``{r}

=group_colors <- c(“Control” = “lightyellow”, “Meth” = “lightgreen”, 
“Prec” = “lightpink”)
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plots <- list()

# Define the selected variables  
selected_vars		   <- 		  c(“LOG_M_MASS”, 

“relative_LOG_Testes”,”relative_LOG_Antenna”,”relative_LOG_
Wing”,”relative_LOG_Leg”,”relative_LOG_Elytra”)

# Function to create, print, and save plots with a specified aspect ratio, 
removing outliers

create_print_save_plots_no_outliers <- function(log_col, plot_width, y_
range) {

  # Calculate the IQR

  Q1 <- quantile(JH23_males[[log_col]], 0.25)

  Q3 <- quantile(JH23_males[[log_col]], 0.75)

  IQR <- Q3 - Q1

  # Define the lower and upper bounds for identifying outliers

  lower_bound <- Q1 - 1.5 * IQR

  upper_bound <- Q3 + 1.5 * IQR

  # Filter the data to exclude outliers

  data_filtered <- JH23_males[JH23_males[[log_col]] >= lower_bound & 
JH23_males[[log_col]] <= upper_bound, ]

  plot <- ggplot(data_filtered, aes(x = Treatment, y = !!sym(log_col), fill = 
Treatment)) + geom_boxplot(color = “black”) +

    scale_fill_manual(values = group_colors) +

    labs(x = “Treatment Group”, y = “ln”, title = log_col) +

    theme_minimal() +

    theme(panel.grid.major = element_blank(), panel.grid.minor = element_
blank(), axis.line = element_line(color = “black”)) +

    ylim(y_range) +

    guides(fill = FALSE)

  # Calculate the dimensions for saving the plots

  plot_height <- 2

  plot_width <- 2

  # Print the plot

  print(plot)

  # Save the plot with the specified dimensions

  ggsave(paste0(log_col, “_plot_males.tiff”), plot = plot, width = plot_
width, height = plot_height)

}

# Iterate through selected variables and create/print/save plots without 
outliers for (log_col in selected_vars) {

  y_range <- c(min(JH23_males[[log_col]]), max(JH23_males[[log_col]]))  
# Adjust the y-axis range as needed create_print_save_plots_no_outli-
ers(log_col, plot_width, y_range)

}

```

1c) Females one-way ANOVA test and post hoc test

```{r}

selected_vars <- c(‘LOG_clutch’, “LOG_LAT_COP”, ‘LOG_DUR_COP’, 
“LOG_LAT_KICK”, ‘LOG_DUR_KICK’)

# grouping_var <- “Treatment”

# a list to store ANOVA results

anova_results <- list()

tukey_results <- list()

# one-way ANOVA for each variable

for(var in selected_vars) {

  formula <- as.formula(paste(var, “~”, “Treatment”))

  anova_result <- aov(formula, data = JH23_females)

  tukey_result <- TukeyHSD(anova_result)

  tukey_results[[var]] <- tukey_result

  anova_results[[var]] <- summary(anova_result)

}

# summaries of the ANOVA results for each variable

for (var in selected_vars) {

  cat(“one-way ANOVA for”, var, “\n”)

  print(anova_results[[var]])

  cat(“\n”)

  cat(“Post Hoc Test for”, var, “\n”)

  print(tukey_results[[var]])

  cat(“\n”)

}

```

```{r}
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selected_vars 		  <-		   c(“LOG_F_MASS”, 

“relative_LOG_Ovarioles”,”relative_LOG_Antenna”,”relative_LOG_
Wing”,”relative_LOG_Leg”,”relative_LOG_Elytra”)

# a list to store ANOVA results

anova_results <- list()

tukey_results <- list()

# one-way ANOVA for each variable

for(var in selected_vars) {

  formula <- as.formula(paste(var, “~”, “Treatment”))

  anova_result <- aov(formula, data = JH23_females)

  tukey_result <- TukeyHSD(anova_result)

  tukey_results[[var]] <- tukey_result

  anova_results[[var]] <- summary(anova_result)

}

# summaries of the ANOVA results for each variable

for (var in selected_vars) {

  cat(“one-way ANOVA for”, var, “\n”)

  print(anova_results[[var]])

  cat(“\n”)

  cat(“Post Hoc Test for”, var, “\n”)

  print(tukey_results[[var]])

  cat(“\n”)

}

```

1d) Females Box plots

```{r}

group_colors <- c(“Control” = “lightyellow”, “Meth” = “lightgreen”, 
“Prec” = “lightpink”)

plots <- list()

selected_vars <- c(‘LOG_clutch’, “LOG_LAT_COP”, ‘LOG_DUR_COP’, 
“LOG_LAT_KICK”, ‘LOG_DUR_KICK’)

# Function to create, print, and save plots with a specified aspect ratio, 
removing outliers

create_print_save_plots_no_outliers <- function(log_col, plot_width, y_
range) {

  # Calculate the IQR

Q1 <- quantile(JH23_females[[log_col]], 0.25, na.rm = TRUE)

  Q3 <- quantile(JH23_females[[log_col]], 0.75, na.rm = TRUE)

  IQR <- Q3 - Q1

  lower_bound <- Q1 - 1.5 * IQR

  upper_bound <- Q3 + 1.5 * IQR

  # Filter data to exclude outliers

  data_filtered <- JH23_females[JH23_females[[log_col]] >= lower_bound 
& JH23_females[[log_col]] <= upper_bound, ]

  # Filter data to exclude rows with NA values in log_col or Treatment

  data_filtered <- data_filtered[complete.cases(data_filtered[, c(“Treat-
ment”, log_col)]), ]

  plot <- ggplot(data_filtered, aes(x = Treatment, y = !!sym(log_col), fill = 
Treatment)) +

    geom_boxplot(color = “black”) +

    scale_fill_manual(values = group_colors) +

    labs(x = “Treatment Group”, y = “ln”, title = log_col) +

    theme_minimal() + theme(panel.grid.major = element_blank(), panel.
grid.minor = element_blank(), axis.line = element_line(color = “black”)) +

    ylim(y_range) +

    guides(fill = FALSE)

  plot_height <- 2

  plot_width <- 2

  print(plot)

  ggsave(paste0(log_col, “_plot.tiff”), plot = plot, width = plot_width, 
height = plot_height)

}

# Iterate through selected variables and create/print/save plots without 
outliers

for (log_col in selected_vars) {

  y_range <- c(min(JH23_females[[log_col]], na.rm = TRUE), max(JH23_fe-
males[[log_col]], na.rm = TRUE))  # Adjust the y-axis range as needed

  create_print_save_plots_no_outliers(log_col, plot_width, y_range)

}

```
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```{r}

group_colors <- c(“Prec” = “lightpink”, “Control” = “lightyellow”, “Meth” 
= “lightgreen”) 

plots <- list()

selected_vars 						      <- 

c(“relative_LOG_Ovarioles”,”relative_LOG_Antenna”,”relative_LOG_
Wing”,”relative_LOG_Leg”,”relative_LOG_Elytra”)

# Function to create, print, and save plots with a specified aspect ratio, re-
moving outliers create_print_save_plots_no_outliers <- function(log_col, 
plot_width, y_range) {

  # Calculate the IQR

  Q1 <- quantile(JH23_females[[log_col]], 0.25, na.rm = TRUE)

  Q3 <- quantile(JH23_females[[log_col]], 0.75, na.rm = TRUE)

  IQR <- Q3 - Q1

  lower_bound <- Q1 - 1.5 * IQR

  upper_bound <- Q3 + 1.5 * IQR

  # Filter data to exclude outliers

  data_filtered <- JH23_females[JH23_females[[log_col]] >= lower_bound 
& JH23_females[[log_col]] <= upper_bound, ]

  # Filter data to exclude rows with NA values in log_col or Treatment

  data_filtered <- data_filtered[complete.cases(data_filtered[, c(“Treat-
ment”, log_col)]), ]

 plot <- ggplot(data_filtered, aes(x = Treatment, y = !!sym(log_col), fill = 
Treatment)) +

    geom_boxplot(color = “black”) +

    scale_fill_manual(values = group_colors) +

    labs(x = “Treatment Group”, y = “ln”, title = log_col) +

    theme_minimal() +

    theme(panel.grid.major = element_blank(), panel.grid.minor = element_
blank(), axis.line = element_line(color = “black”)) +

    ylim(y_range) +

    guides(fill = FALSE)

  plot_height <- 2

  plot_width <- 2

  print(plot) 

  ggsave(paste0(log_col, “_plot.tiff”), plot = plot, width = plot_width, 
height = plot_height)

} 

# Iterate through selected variables and create/print/save plots without 
outliers

for (log_col in selected_vars) {

  y_range <- c(min(JH23_females[[log_col]], na.rm = 

TRUE), max(JH23_females[[log_col]], na.rm = TRUE))  # Adjust the y-axis 
range as needed

  create_print_save_plots_no_outliers(log_col, plot_width, y_range)

}

```

2) Image Augmentation

def rotate_image(image):

    rotated_image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)

    return rotated_image

def flip_horizontal(image):

    flipped_image = cv2.flip(image, 1)

    return flipped_image

def flip_vertical(image):

    flipped_image = cv2.flip(image, 0)

    return flipped_image

def add_noise(image, noise_level):

    row, col, ch = image.shape

    mean = 0

    sigma = noise_level

    gauss = cv2.randn(cv2.randn(image.copy(), 0, sigma), 0, sigma)

    noisy_image = cv2.add(image, gauss)

    return noisy_image

# go over the root directory containing class folders

for class_name in os.listdir(root_dir):

    class_dir = os.path.join(root_dir, class_name)

  # checking for directories

    if os.path.isdir(class_dir):

        print(f”Processing images in class folder: {class_name}”)
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        # count original images

 original_image_count = len([filename for filename in os.listdir(class_dir) 
if filename.endswith((‘.jpg’, ‘.png’, ‘.tif’))])

        print(f”Number of original images in {class_name}: {original_im-
age_count}”)

        # go over files in the class directory

        for filename in os.listdir(class_dir):

            if filename.endswith((‘.jpg’, ‘.png’, ‘.tif’)):

                # load the original image

                original_image_path = os.path.join(class_dir, filename)

                image = cv2.imread(original_image_path)

                if image is None:

                    print(f”Error loading image: {original_image_path}”)

                    continue

                rotated_image = rotate_image(image)

                flipped_horizontal = flip_horizontal(image)

                flipped_vertical = flip_vertical(image)

                noisy_image = add_noise(image, 30)

                # save the new augmented images

                cv2.imwrite(os.path.join(class_dir, f”rotated_{filename}”), rotat-
ed_image)

          	 cv2.imwrite(os.path.join(class_dir, f”flipped_horizontal_{file-
name}”), flipped_horizontal)

                cv2.imwrite(os.path.join(class_dir, f”flipped_vertical_{filename}”), 
flipped_vertical)

         cv2.imwrite(os.path.join(class_dir, f”noisy_{filename}”), noisy_image)

        # count # augmented images

        augmented_image_count = len([filename for filename in os.list-
dir(class_dir) if filename.startswith((‘rotated_’, ‘flipped_horizontal_’, 
‘flipped_vertical_’, ‘noisy_’))])

        print(f”Number of augmented images in {class_name}: {augment-
ed_image_count}”)

print(“Data augmentation completed.”)

3) Classification

model5 = LinearSVC()

model5.fit(traindata,trainlabels)

guessedlabels5 = model5.predict(testdata)

4) Neural Network Automation Model

model = Sequential()

model.add(InputLayer(input_shape=[INPUT_SIZE[0],INPUT_
SIZE[1],3])) #keras will internally add batch dimension

model.add(Conv2D(filters=32,kernel_size=7,strides=3,padding=’same’, 
activation=’relu’))

model.add(MaxPool2D(pool_size=3,padding=’same’))

model.add(Dropout(0.3))

model.add(Conv2D(filters=128,kernel_size=5,strides=3,padding=’same’, 
activation=’relu’))

model.add(MaxPool2D(pool_size=3,padding=’same’))

model.add(Dropout(0.3))

model.add(Conv2D(filters=64,kernel_size=3,strides=1,padding=’same’, 
activation=’relu’))

model.add(MaxPool2D(pool_size=2,padding=’same’))

model.add(Dropout(0.3))

model.add(Flatten())

model.add(Dense(64,activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(16,activation=’relu’))

model.add(Dropout(0.3))

model.add(Dense(1,activation=’linear’))

model.compile(loss=’mean_squared_error’, optimizer=Adam(learning_
rate=0.001))

model.summary()


